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Abstract— Active Networking is the basis for
a range of new and innovative applications that
make use of computational resources inside network
routers. One such application is Aggregated Hier-
archical Multicast, which aims at implementing effi-
cient many-to-many communication. In certain sce-
narios it is possible to transmit less accurate, aggre-
gated data and thus achieve better scalability. Us-
ing Active Networks, the aggregation computation
can be done transparently by network routers with-
out end system support. We present how aggregated
data streams can be structured in a hierarchical fash-
ion to allow easy access of data at the desired aggre-
gation level. We introduce two application examples
to illustrate the system design, analyze the perfor-
mance of the aggregation mechanism, and evaluate
it using a prototype implementation.

Keywords— active networks, multicast, data aggre-
gation, active network application

I. Introduction

Many-to-many or multi-source communication is be-
coming an increasingly important way of communicat-
ing. As more and more real-time data is sent by sources
distributed over the network, the receiving end-systems
become overwhelmed by the amount of data traffic. In a
traditional many-to-many communication, each sender
is connected to each receiver (be it over unicast or mul-
ticast). As a result, a receiver has to deal with as many
connections as there are senders. This does not scale
well, neither in terms of bandwidth requirements nor
in terms of computational demands. Handheld clients
with little computational resources or devices connected
over low bandwidth wireless links are severely limited
in the number of connections they can handle.

A key observation, though, is that for certain appli-
cations in many-to-many communications the senders
are not of equal importance to the receiver. Thus, it is
sufficient to aggregate the information sent by most of
the sources, while keeping the full data stream from a
few selected sources. To illustrate this concept, we look
at two applications: a battlefield information system
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and an audio conferencing application. We show how
aggregation is done for each application and how a hi-
erarchical overlay allows the user to dynamically choose
the right level of detail for his needs.

The basis for the work lies in the assumption that
the interconnection network between the senders and
receivers is capable of performing the aggregation of
data on-the-fly. Thus, we require what is referred to
as an “active network” [1], [2]. An active node in such
a network is capable of performing processing of pack-
ets as they are being forwarded. Typical implementa-
tions range from workstations that act as active routers
to high-performance switches that are augmented with
per-port network processors. The definition of a unify-
ing node operating system (NodeOS [3]) aims at making
these systems interoperable. While Aggregated Hierar-
chical Multicast is an application for active networks,
we do not go into the details of active networking in
this paper.

Section II introduces the example applications con-
sidered here and shows different information aggrega-
tion methods. Section III discusses the hierarchical
structure of mutlicast sessions that provides various lev-
els of aggregation detail to the user. Section IV de-
scribes a general-purpose aggregation algorithm that is
used in our prototype implementation. Section V gives
quantitative evaluation of Active Hierarchical Multi-
cast. A summary of the contributions in Section VI
concludes this paper.

II. Information Aggregation and its
Applications

As discussed above, the limited scalability of many-
to-many communications lies in the demands on the
network to deliver numerous data streams to the end
system and the demands on the end system to process
and display the information. To be more concrete, we
look at the following two applications.

A. Application I: Battlefield Information System

The battlefield information system is aimed at pro-
viding status information of numerous soldiers and
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Fig. 1. Battlefield Information Application for Aggregated
Hierarchical Multicast. Each node sends its status informa-
tion to its hierarchical parent, where it is aggregated.

equipment to a large number of commanders and ob-
servers. We assume that all soldiers are connected to
a common interconnection network (i.e., via wireless
links) and have the equipment to periodically transmit
their status information (i.e., geographic location, vital
statistics, and other easily observable data). The ob-
servers can receive this data and display the status of
all soldiers accordingly. This application is an example
of large multicast with many sources.

The challenge of this application lies in the large
amount of data that is received by an observer. Consid-
ering only a few thousand soldiers, who transmit every
few seconds, gives an average of several hundred data
packets per second that have to be processed and dis-
played.

Since it is unlikely that any observer is interested
in the exact status of every single soldier at all times,
it is possible to present aggregated status information
of a group of soldiers to an observer thereby reducing
the number of data streams that are sent to a receiver.
Geographic information for a group of people, for ex-
ample, can be represented by its centroid, the weighted
geographic average, or the convex hull. This reduces
the amount of detail in the representation, but it also
reduces the amount of data that needs to be transmit-
ted. Similarly, vital statistics can be aggregated. For
example the predicate ”healthy” of each soldier can be
aggregated using a boolean “and” function.

Finally, there is the question of where in the network
the aggregation computations should be done. For this
purpose, we use a given hierarchical structure (i.e., the
typical chain-of-command). Each node sends its infor-
mation to its hierarchical parent, where the information
is aggregated with that of the node’s siblings. This is
repeated over all levels of the hierarchy. An illustration
of this is shown in Figure 1. More details on how to tap
the hierarchy at the right level to get the right detail of
information is discussed in Section III.

Telephone

Telephone

Telephone

Telephone

Telephone

Telephone

Telephone

Fig. 2. Audio Conferencing Application for Aggregated Hi-
erarchical Multicast. Each end system sends audio that is
mixed at nodes where multiple audio streams merge. The
end system receives a single, mixed audio stream.

B. Application II: Audio Conferencing

An audio conferencing application, as illustrated in
Figure 2 is another typical example of a many-to-many
multicast. Each participant in the conference needs
to be able to hear all other participants and therefore
needs to receive their audio data stream. In a non-
active network, the end system has to receive all these
data streams, mix them together, and play the result
to the user. In an active network, though, the audio
streams can be aggregated as they traverse the network
and the end-system is provided with a single mixed au-
dio stream.

C. Data Aggregation

Aggregation of many-to-many multicast data streams
in the network brings benefits to the network as well as
to the end system.

From the view point of the network, the total amount
of traffic is reduced, since only one aggregated data
stream has to be delivered to a receiver. Even though
the aggregated data stream can potentially be larger
than any single data stream, it will always be less than
the sum of all single data stream. Also, there can be
a reduction in transmission frequency for aggregated
data streams. For example, in the battlefield informa-
tion system, it might be necessary to have high fre-
quency updates for the status of an individual soldier
who moves around quickly. The centroid of a group,
though, moves at a slower rate and therefore needs to
be updated less frequently. A qualitative analysis of
this result can be found in Section V.

From the view point of the end system, the received
data can be seen as a single unicast connection from the
group and displayed directly without the need for com-
plex aggregation processing. In the audio application,
for example, the mixed audio stream differs not from
a unicast audio stream, except that the audio samples
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are an aggregate from several sources. This reduces the
processing requirements and simplifies the end system
application development.

There are several issues that have to be addressed in
order to achieve efficient data aggregation. For one, it
has to be possible to aggregate the data that is trans-
mitted. In many cases, aggregation can be achieved
by downscaling information (e.g., scale change for geo-
graphic information) or generating an overlay of dif-
ferent data streams (e.g., mixing of audio). Status
information can often be aggregated by simple arith-
metic and boolean functions. However, certain data,
e.g., text messages, cannot be scaled or aggregated ef-
fectively without losing crucial components of the data.
In such a case, the information can be concatenated and
transmitted unchanged, losing the benefits of reduction
in bandwidth and processing requirements.

III. Hierarchy of Source-based Multicast
Sessions

In a realistic environment, different observers need
different levels of aggregation detail and an individ-
ual observer might want to change the level of detail
dynamically. To accommodate these requirements, we
propose a hierarchy of multicast sessions that provide
different levels of aggregation to the end system. Each
session is augmented by control information that allows
the user to change to a higher or lower level of detail if
necessary.

A. Hierarchy Layout

Each layer in the hierarchy represents a different ag-
gregation level. The lowest layer, layer 0, are the data
sources (i.e., soldiers, telephones) that send their unag-
gregated data. Each node in layer 1 aggregates multiple
layer 0 sources to a new stream. This stream is sent up-
wards to layer 2, where it is aggregated with other layer
1 streams. This continues up to the root node. In gen-
eral, a layer i node aggregates streams from layer i − 1
and sends it to layer i+1. Figure 3 shows this concept.

An observer who wants to get information from a
node on a certain layer, can directly connect to that
node and receive its aggregated data stream. If more
detail is required, the observer can connect to a child
of the current node. If less detailed information is re-
quired, the observer can move up to the parent of the
current node.

Since there are many observers present at any time,
it is of course possible that multiple observers are con-
nected to a certain node. To make this scalable, any
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Fig. 3. Hierarchy of Data Aggregation.

node offers its data as a mutlicast session, for which
it acts as the source. Any observer can subscribe to
this multicast session using well established mutlicast
schemes (e.g., by using mutlicast routers that exchange
IGMP [4] messages and route using MOSPF [5]).

B. Session Control

The scheme described above requires that nodes are
configured to form the tree and aggregate the right set
of lower layer streams. Thus, all nodes other than leaves
need to know their children at start time. Once the
children are known, the node can subscribe to their
multicast sessions and aggregate the information.

The control infomation that is distributed with each
session needs to contain two components. First, the
list of children and their respective session identifiers is
included so that an observer can receive data from a
lower layer. Second, the session identifier of the parent
of the current node is included to allows an observer to
step to a higher aggregation layer.

C. Naming Issues

For scalability reasons, the control data of a session
cannot contain the names/identifiers of all children,
grandchildren, etc., since this would lead to an expo-
nential growth in control information. As a result, at a
high level in the hierarchy, say layer i, the contributing
sources of a data stream are not known. If an observer
wants to step towards a source x, he does not know
which child of that node contains the aggregated data
stream from x.

To solve this problem, we add a naming scheme to
the hierarchy. Each node is identified by its name and
the concatenation of names of nodes in the path from
the root to the node. This results in a hierarchical nam-
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ing scheme similar to that used in the Domain Name
Service [6] in the Internet or that of class names in
object oriented programming languages, like Java [7].
Thus, the full name of leaf x contains the list of higher
layer nodes that lead to x, which allows the observer
to easily navigate through the tree. For convenience
purposes and to abbreviate long names, certain inter-
mediary nodes can be aliased with unique names.

IV. Aggregation Algorithm

The algorithm we discuss here aggregates several
data streams on an active node. Each stream is consid-
ered to be a periodic sequence of unreliable datagrams.
The basic steps consist of the buffering of packets un-
til they can be merged with other packets, the merging
of the data, and the transmission of the result. Also,
there is a mechanism to detect packet loss and avoid
indefinite waiting. Our aggregation algorithm is simi-
lar to Concast, described in [8]. While Concast is an
implementation of a general purpose many-to-one com-
munications paradigm, it does not specifically consider
timeout issues due to packet loss and thus does not lend
itself well to a real-time environment.

Consider a router that has to merge k data streams,
s1 . . . sk, to a new data stream sa. Assume we are given
an aggregation function F that generates a packet psa

from packets ps1 , . . . psk
(psa = F (ps1 , . . . psk

)). If a
packet psi has not been received during a period and the
timeout is triggered after ttimeout, the merging function
F can use either an older data packet of stream si or
use the neutral element 0F as a placeholder. Let us
also assume for now that all sources send packets of
the same size (same amount of information or samples)
and with the same period. The resulting procedure
for buffering and merging packets is shown in detail in
Figure 4. There are four parts to the algorithm:
1. Part I (lines 7-12): A packet arrives and is stored
in the buffer. This requires that the buffer slot for that
stream is not yet used.
2. Part II (lines 13-26): A packet arrives and its buffer
slot is already taken. This happens, when the algorithm
was waiting for packets from other streams that were
lost or delayed. With the arrival of a second packet
from a stream, we know that it is time to send the
aggregated packet. Empty buffer slots are filled with
null packets and the data is aggregated and sent.
3. Part III (lines 27-34): All buffer slots are filled. In
this case, one packet from each flow is available and we
can aggregate the data and send out the result.
4. Part IV (lines 36-46): A timeout occurred. In this

1: initialization:
2: clear b
3: bcount ← 0
4: set timer to ∞
5:
6: receive packet psi from stream si

7: if b[i] is empty then
8: b[i] ← psi {store packet in buffer}
9: bcount ← bcount + 1 {increase buffer counter}
10: if bcount = 1 then
11: set timer to ttimeout {set timer if this is the first packet in

the buffer}
12: end if
13: else
14: {there is already a packet from source si}
15: for j = 1 to k do
16: if b[j] is empty then
17: b[j] ← 0F {fill empty buffer slots with neutral elements}
18: end if
19: end for
20: psa ← F (b) {merge packets}
21: send psa

22: clear b
23: b[i] ← psi {store packet that was just received in buffer}
24: bcount ← 1 {adjust buffer counter}
25: set timer to ttimeout {set timer (since this is the first packet in

the buffer)}
26: end if
27: if bcount = n then
28: {there is one packet from each source in the buffer}
29: psa ← F (b) {merge packets}
30: send psa

31: clear b
32: bcount ← 0 {adjust buffer counter}
33: set timer to ∞
34: end if
35:
36: on timer = 0 do: {timeout occurred}
37: for j = 1 to n do
38: if b[j] is empty then
39: b[j] ← 0F {fill empty buffer slots with neutral elements}
40: end if
41: end for
42: psa ← F (b) {merge packets}
43: send psa

44: clear b
45: bcount ← 0 {adjust buffer counter}
46: set timer to ∞

Fig. 4. Packet Merging Algorithm.

case, missing packets are replaced by null packets and
the aggregated result is sent.

The packets are stored in the buffer array, b, that has
n slots. The variable bcount keeps track of the number
of valid buffer entries. The timer is set to ttimeout every
time the first packet is put into the empty buffer. This
way, no packet is ever stored longer than ttimeout. The
timer is cleared (set to ∞) when the buffer is cleared.

V. Evaluation

To show the effectiveness of Aggregated Hierarchical
Multicast, we first look at the reduction of link band-
width for a given scenario. Second, we analyze the com-
plexity and correctness of the aggregation algorithm.
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Fig. 5. Traffic comparison between Aggregated Hierarchical
Multicast and many-to-one communication.

And third, we show measurements from a prototype
implementation of the audio conferencing application.

A. Bandwidth and Computation

To analyze the benfits of aggregation in the network,
we compare Aggregated Hierarchical Multicast with
traditional many-to-one communication, where the re-
ceiver aggregates all data. Assume a balanced tree of
height h with nodes of degree k. Say the receiver is the
root of the tree and it wants to observe all leaves of a
subtree with height l. In Aggregated Hierarchical Mul-
ticast, each leaf of the subtree sends one message to its
parent, which is further aggregated until it reaches the
root of the subtree. In traditional many-to-one com-
munication, all leaves have to send a message to the
root. Figure 5 shows the fraction of traffic that is nec-
essary to observe a subtree on various levels compared
to many-to-one communication. Even for small levels
of aggregation (l ≥ 2), the total traffic is reduced by
60 − 80%.

However, aggregation in the network has its price.
Each data stream is aggregated possibly multiple times
on the way to its destination compared to a many-to-
one scheme, where aggregation happens only once at
the destination. Figure 6 shows that for small node
degrees (k = 2) potentially twice as many aggrega-
tion computations are necessary. Higher degree trees
have less of a computational overhead. Considering
that higher degree trees also require fewer transmis-
sions, they are more favorable for Aggregated Hierar-
chical Multicast.

B. Aggregation Algorithm

Two parts of the aggregation algorithm contribute
to its computational complexity. One is the per packet
processing and the other is the aggregation of the stored
packets. As for the per packet processing, the complex-
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Fig. 6. Computation comparison between Aggregated Hier-
archical Multicast and many-to-one communication.

ity is constant (O(1)). The packet merging, is O(k),
since we have to go through all stored packets. If we do
an amortized analysis, though, we can add a credit for
each packet received, which is used for the O(k) com-
putation. This results in a constant O(1) amortized
complexity.

The correctness proof of the algorithm is beyond the
scope of this paper, but can be found in detail in [9].
The basic result is that the algorithm operates correctly
if the maximum jitter jmax is bound to jmax < 1

4k · ∆t
and the timeout is set to ttimeout = (1− 1

k ) ·∆t+2 ·jmax,
where ∆t is the time between packets from one source.

C. Measurements

To evaluate the performance of the described algo-
rithm in a real application, we have implemented a pro-
totype of the audio conferencing application described
above. The prototype aggregates PCM µ-law encoded
data streams and is limited only insofar that it uses uni-
cast connections between nodes and does not implement
all control features. All measurements were performed
on a heterogenous set of machines with Pentium proces-
sors running the NetBSD and Linux operating systems.

C.1 Processing Delay

The processing delay is the time between the arrival
of the packet that triggers aggregation and the trans-
mission of the aggregated packet. It varies depending
on the size of the packet, the aggregation complexity,
and the number of packets in the buffer. Figure 7 shows
the processing times for 1000 aggregations for degrees of
k = 1 . . . 5 and a packet size of 400 bytes. The process-
ing delay is relatively uniform over the number of pack-
ets. Higher degree aggregations require slightly more
processing.

To show the effects of varying node degree and packet
size, Figure 8 shows the median delay for packets of
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Fig. 7. Processing Delay for 400 byte Packets and Node
Degrees of k = 1 . . . 5.
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Fig. 8. Median Processing Delay for Varying Packet Sizes
and Node Degrees.

sizes 80, 240, 400, and 800 byte. The degree of the
node varies again from 1 to 5. The increase in process-
ing time is proportional to the packet size, as should
be expected. Over the range of data, there is also an
increase in processing time due to higher node degrees,
but it is not quite as significant.

C.2 Jitter

The jitter that is introduced by the aggregation af-
fects the correctness of the aggregation and needs to
be bound, as discussed in Section V-B. The jitter for
an audio data source is plotted in Figure 9. It can be
seen that the average jitter is limited to 10 µs. Looking
at the jitter after traversing five aggregation steps, Fig-
ure 10 shows that it has increased to about 50 µs. This
indicates that jitter does increase, but 50 µs is well be-
low 1% of the interpacket time and therefore does not
pose any problems.

These measurements indicate that the aggregation
algorithm is robust and performs well over a wide range
of aggregation levels, node degrees, and packet sizes.

VI. Summary

We have presented a many-to-many communication
scheme that uses data aggregation to scale the view of
a receiver to the required accuracy level. By reducing
the overall data traffic, while increasing the computa-
tional requirements only slightly, Aggregated Hierarchi-
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Fig. 9. Jitter for 400 byte Packets at Source.
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Fig. 10. Jitter for 400 byte Packets after 4 Aggregation
Steps.

cal Multicast improves the scalability of many-to-many
communication. Measurements on the prototype imple-
mentation have shown that the aggregation algorithm
is robust and performs efficiently.
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